Ref No:

SRI KRISHNA INSTITUTE OF TECHNOLOGY

COURSE PLAN

Academic Year 2019-20

Program:	B E – Mechanical Engineering
Semester :	7
Course Code:	15ME742
Course Title:	Tribology
Credit / L-T-P:	3/ 3-0-0
Total Contact Hours:	40
Course Plan Author:	SAGAR HN

Academic Evaluation and Monitoring Cell

#29, Hesaraghatta Main road, Chimney Hills, Chikkabanavara P.O., Bengaluru – 560090, Karnataka, INDIA Phone / Fax :+91 80 23721477 -STD- 080 23721315 Web:www.skit.org.in E-mail:skit1princi@gmail.com/principal@skit.org.in

Table of Contents

A. COURSE INFORMATION	4
1. Course Overview	4
2. Course Content	4
3. Course Material	
4. Course Prerequisites	
5. Content for Placement, Profession, HE and GATE	6
B. OBE PARAMETERS	7
1. Course Outcomes	7
2. Course Applications	
3. Mapping And Justification	
4. Articulation Matrix	
5. Curricular Gap and Content	
6. Content Beyond Syllabus	
C. COURSE ASSESSMENT 1	
1. Course Coverage	10
2. Continuous Internal Assessment (CIA)	
D1. TEACHING PLAN - 1	1
Module - 1	11
Module – 2	12
E1. CIA EXAM – 1	3
a. Model Question Paper - 1	13
b. Assignment -1	13
D2. TEACHING PLAN - 2	8
Module – 3	18
Module – 4	19
E2. CIA EXAM – 2	20
a. Model Question Paper - 2	20
b. Assignment – 2	20
D3. TEACHING PLAN - 3	4
Module – 5	24
E3. CIA EXAM – 3	25
a. Model Question Paper - 3	25
b. Assignment – 3	
F. EXAM PREPARATION	9
1. University Model Question Paper	29
2. SEE Important Questions	
G. Content to Course Outcomes	
1. TLPA Parameters	
2. Concepts and Outcomes:	
•	

Note : Remove "Table of Content" before including in CP Book Each Course Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	ME
Semester:	7/VII	Academic Year:	2019-20
Course Title:	Tribology	Course Code:	15ME742
Credit / L-T-P:	03/3-0-0	SEE Duration:	180 minutes
Total Contact Hours:	42	SEE Marks:	80Marks
CIA Marks:	20	Assignment	1 / Module
Course Plan Author:	Sagar HN	Sign	Dt:
Checked By:		Sign	Dt:
CO Targets	CIA Target :%	SEE Target:	%

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

Mod	Content	Teachin	Identified Module	Blooms
ule		g Hours	Concepts	Learning Levels
1	Introduction to Tribology: Historical background, practical importance, and subsequent use in the field. Lubricants: Types and specific field of applications. Properties of lubricants, viscosity, its measurement, effect of temperature and pressure on viscosity, lubrication types, standard grades of lubricants, and selection of lubricants.		-Tribological properties -Tribological parameters	L2 understand L2 understand
2	Friction: Origin, friction theories, measurement methods, friction of metals and non-metals. Wear: Classification and mechanisms of wear, delamination theory, debris analysis, testing methods and standards. Related case studies.		-Friction, -Contact mechanism	L2 understand L2 understand
3	Hydrodynamic journal bearings: Friction forces and power loss in a lightly loaded journal bearing,Petroff's equation, mechanism of pressure development in an oil film, and Reynold's equation in 2D. Introduction to idealized journal bearing, load carrying capacity, condition for equilibrium,Sommerfeld's number and it's significance; partial bearings, end leakages in journal bearing, numerical examples on full journal bearings only.	(5,.5)	-Lightly loaded journal bearing analysis -Full journal bearing analysis	L4 analyze L4 analyze
4	Plane slider bearings with fixed/pivoted shoe: Pressure distribution, Load carrying capacity, coefficient of friction, frictional resistance in a fixed/pivoted shoe bearing, center of pressure, numerical examples. Hydrostatic Lubrication: Introduction to hydrostatic lubrication, hydrostatic step bearings, load carrying capacity and oil flow through the hydrostatic step bearing, numerical examples.		-Plane slider bearings analysis -Hydrostatic step bearings analysis	L3 apply L3 apply
5	 Bearing Materials: Commonly used bearings materials, and properties of typical bearing materials. Advantages and disadvantages of bearing materials. Introduction to Surface engineering: Concept and scope of surface engineering. Surface modification – transformation hardening, surface melting, thermo chemical processes. Surface Coating – plating, fusion processes, vapor phase processes. Selection of coating for wear and corrosion resistance. 		-Bearing Materials properties -surface engineering	L2 understand L2 understand
-	Total	42	-	-

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C). 1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 - 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

3. Research: Recent developments on the concepts – publications in journals; conferences etc.

	rch: Recent developments on the concepts – publications in journals; conferences et	c.	a
Module s	Details	Chapters in book	Availability
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1, 2, 3		3, 4	In Lib / In Dept
	"Introduction to Tribology", B. Bhushan, John Wiley & Sons, Inc., New York, 2002		
4, 5	"Engineering Tribology", J. A. Williams, Oxford Univ. Press, 2005.	2,4	In Lib/ In dept
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
1, 2	"Engineering Tribology", Prasanta Sahoo, PHI Learning Private Ltd, New Delhi, 2011.		In Lib
1, 2	"Introduction to Tribology in bearings", B. C. Majumdar, Wheeler Publishing.	1,2	Not Available
3, 4, 5	"Tribology, Friction and Wear of Engineering Material", I. M.Hutchings, Edward Arnold, London, 1992.	4,2	In lib
	Concept Videos or Simulation for Understanding	-	-
C1	Working of viscometer https://www.youtube.com/watch?v=Fvud81pYGOg – 15 Mins https://www.youtube.com/watch?v=TsBTI3tO5-8 – 5 Mins		
	Working Principle of fully Journal Bearing https://www.youtube.com/watch?v=Fvud92pYGOg – 10 Mins https://www.youtube.com/watch?v=TsBTI4tO– 5 Mins		
C3	Working Principle of fully Journal Bearing https://www.youtube.com/watch?v=Fvud81pYGOg – 5 Mins https://www.youtube.com/watch?v=TsBTI45tO5– 5 Mins		
C4	Bearing Materials properties https://www.youtube.com/watch?v=TsBTI78tO5-8 – 5 Mins		
D	Lab : https://www.youtube.com/watch?v=P9e7hUNPGVs -		
	Software Tools for Design	-	-
Е	Recent Developments for Research	-	-
	Improve the bearing material properties		
	https://ieeexplore.ieee.org/abstract/document/6891996		
	Others (Web, Video, Simulation, Notes etc.)	-	-
	How viscometer works ? https://www.youtube.com/watch?v=nA_tgIygvNo		
?			

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Diudei	no mast na	ve learne the follow	ing courses / ropies with deser	libea content	•	
Modu	Course	Course Name	Topic / Description	Sem	Remarks	Blooms
les	Code					Level
1	15ME54	Design of	Bearing design	6		Understand
		machine element				L2
		-II				
2	15ME32	Material Science	Wear and Friction	3	-	Understand
						L2
-						

1			1	1
-				

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Modu	Topic / Description	Area	Remarks	Blooms
les				Level
1	Wear, friction, Bearing Material	Higher Study	Gap	Understand
			A seminar on Bearing Material	L2
-				
-				

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

Modu	Course	Course Outcome	Teach.	Concept	Instr	Assessment	Blooms'
les	Code.#	At the end of the course, student	Hours	-	Method	Method	Level
		should be able to					
1	15ME742.1	Understand the fundamentals of	4	Tribological	Lecture	Slip Test	L2
		tribology		properties			understand
1		Understand the parameters associated	4	Tribological	Lecture/	Assignmen	L2
		with tribology		parameters	Tutorial	t	understand
2		Understand the concepts of tribological		friction	Lecture	Assignmen	L2
		components experiencing the relative				t	understand
		motion					
2		Understand the concepts of contact	4	Contact	Lecture	Slip Test	L2
		mechanism involved in relative motion	-	mechanism	.	<u></u>	understand
3		Analyze requirements for design a	5	Lightly	Lecture	Slip test	L4
		lightly load journal bearings		loaded			Analyse
				journal			
				bearing analysis			
3	15ME742.6	Analyze terminology of full journal	5	Full journal	Lecture/T	Assignmen	L4
5	151012742.0	bearing	5	bearing	utorial	t	Analyse
		ocums		analysis	utoriui	Ľ	7 mary se
4	15ME742.7	Apply the performance characteristics	4	Plane slider	Lecture/T	Assignmen	L3
		of bearing in design of plane slider		bearings	utorial	t	apply
		bearing		analysis			11.2
4	15ME742.8		4		Lecture/T	Assignmen	L3
		lubrication for design a step bearing		step bearings	utorial	ť	apply
				analysis			
5		Understand bearing material properties	4	Bearing	Lecture	Assignmen	L2
		and selection procedure		Materials		t	understand
				properties			
5	15ME742.10	1 1		surface	Lecture	Assignmen	L2
		engineering for different applications of		engineering		t	understand
		tribology					
-	-	Total	42	-	-	-	L2-L4

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to . . .

1	Application tribology in the transport industry focused on reliability, ensuring the safe, continuous operation of machine components,tribology research concentrated on the design and effective lubrication of machine components	CO1	L2
1	The use of lubricants which minimize direct surface contact reduces tool wear and power requirements	CO2	L2
2	In drum brakes, brake shoes or pads are pressed outwards against a rotating cylinder (brake drum) to create friction. Since braking discs can be more efficiently cooled than drums, disc brakes have better stopping performance.	CO3	L2
2	Wear in machine element, together with other processes such as fatigue and , creep causes functional surfaces to degrade, eventually leading to material failure or loss of functionality.	CO4	L2
3	Journal bearings support the cylindrical rotating shaft. Journal bearing are designed based on lubricant and lubrication mechanisms	CO5	L4
3	application can be found in a car's crankshaft and camshaft. In my industry we use tilt pad bearings in turbo machinery (e.g. compressors, turbines).	CO6	L4
4	plain bearing it is simply a shaft rotating in a bearing. In locomotive and rail road car applications a journal bearing specifically referred to the plain bearing once used at the ends of the axles of railroad wheel sets	CO7	L3
4	Hydrostatic bearing in high precision machine tools ,pad for automotive application,high- precision applications in measuring, testing and machine tool engineering	CO8	L3
5	Stainless steel materials are used to make bearing components because it is more resistant to surface corrosion due to the higher content of chromium (~18%) with the addition of nickel. The material needs to be protected from corrosion with a coating of oil/grease (cages) or by plating (shields).	CO9	L2
5	Surface engineering techniques are being used in the automotive, aerospace, missile, power, electronic, biomedical, textile, petroleum, petrochemical, chemical, steel, cement, machine tools. Surface engineering techniques can be used to develop a wide range of functional properties, including physical, chemical, electrical, electronic, magnetic, mechanical, wear-resistant and corrosion-resistant properties at the required substrate surfaces. Almost all types of materials, including metals, ceramics, polymers, and composites can be coated on similar or dissimilar materials.	CO10	L2

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair.

To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

Mod	d Mapping Mapping		Mapping	Justification for each CO-PO pair	Lev
ules	_		Level		el
-	CO	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-
1	CO1	PO1	3	'Engineering Knowledge:' - Acquisition of Engineering Knowledge of fundamentals	L2
				of tribology is essential to accomplish solutions to complex engineering problems in	
				Mechanical Engineering.	
1	CO1	PO2	2	'Problem Analysis': <u>Analyzing problems</u> require knowledge / understanding of	L3
				Characteristics of tribology to accomplish solutions to complex engineering	
				problems in Mechanical Engineering.	
1	CO2	po1	3	'Engineering Knowledge:' - <u>Acquisition of Engineering Knowledge</u> of parameters	
				associated with tribology is essential to accomplish solutions to complex engineering	
				problems in Mechanical Engineering.	
1	CO2	p02	2	'Problem Analysis': <u>Analyzing problems</u> require knowledge / understanding of	
				Operation of viscometer to accomplish solutions to complex engineering problems	
				in Mechanical Engineering.	
2	CO3	PO1	3	'Engineering Knowledge:' - <u>Acquisition of Engineering Knowledge</u> of <u>concepts of</u>	
				contact mechanism involved in relative motion is essential to accomplish solutions	
				to complex engineering problems in Mechanical Engineering.	
2	CO3	PO2	2	'Problem Analysis': <u>Analyzing problems</u> require knowledge / understanding of	
				mechanism of Wear to accomplish solutions to complex engineering problems in	
				Mechanical Engineering.	
2	CO4	PO1	3	'Engineering Knowledge:' - Acquisition of Engineering Knowledge of fundamentals	5

				of tribology is essential to accomplish solutions to complex engineering problems in Mechanical Engineering.
2	CO4	PO2	2	^{(Problem Analysis': <u>Analyzing problems</u> require knowledge / understanding of <u>parameters associated with tribology</u> to accomplish <u>solutions to complex</u> <u>engineering problems</u> in Mechanical Engineering.}
3	CO5	PO1	3	[•] Engineering Knowledge: [•] - <u>Acquisition of Engineering Knowledge</u> of <u>lightly load</u> <u>journal bearings</u> is essential to accomplish <u>solutions to complex engineering</u> <u>problems</u> in Mechanical Engineering.
3	CO5	PO2	2	^{(Problem Analysis': <u>Analyzing problems</u> require knowledge / understanding of <u>terminology of full journal bearing</u> to accomplish <u>solutions to complex</u> engineering problems in Mechanical Engineering.}
3	CO6	PO1	3	⁶ Engineering Knowledge: ⁷ - <u>Acquisition of Engineering Knowledge</u> of <u>full journal</u> <u>bearing</u> is essential to accomplish <u>solutions to complex engineering problems</u> in Mechanical Engineering.
3	CO6	PO2	2	'Problem Analysis': <u>Analyzing problems</u> require knowledge / understanding of <u>design parameters associated with lightly loaded journal bearing</u> to accomplish <u>solutions to complex engineering problems</u> in Mechanical Engineering.
4	CO7	PO1	3	⁶ 'Engineering Knowledge:' - <u>Acquisition of Engineering Knowledge</u> of <u>plane slider</u> <u>bearing</u> is essential to accomplish <u>solutions to complex engineering problems</u> in Mechanical Engineering.
4	CO7	PO2	2	'Problem Analysis': <u>Analyzing problems</u> require knowledge / understanding of performance characteristics of bearing_to accomplish <u>solutions to complex</u> engineering problems in Mechanical Engineering.
4	co8	PO1	3	⁶ Engineering Knowledge: ⁷ - <u>Acquisition of Engineering Knowledge</u> of <u>hydro static</u> <u>lubrication</u> is essential to accomplish <u>solutions to complex engineering problems</u> in Mechanical Engineering.
4	co8	PO2	2	'Problem Analysis': <u>Analyzing problems</u> require knowledge / understanding of performance characteristics of step bearing to accomplish <u>solutions to complex</u> engineering problems in Mechanical Engineering.
5	co9	PO1	3	⁶ ⁶ ⁶ ⁶ ⁶ ⁶ ⁶ ⁶ ⁷ ⁶
5	co9	PO2	2	^{(Problem Analysis': <u>Analyzing problems</u> require knowledge / understanding of <u>Bearing Materials properties</u> to accomplish <u>solutions to complex engineering</u> <u>problems</u> in Mechanical Engineering.}
5	co10	PO1	3	⁶
5	co10	PO2	2	'Problem Analysis': <u>Analyzing problems</u> require knowledge / understanding of surface engineering and its applications_ to accomplish <u>solutions to complex</u> engineering problems in Mechanical Engineering.

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

	- TF 0	in an ampping to for for them of the pr	,,															
-	-	Course Outcomes	Program Outcomes												-			
Modu	CO.#	At the end of the course student	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	Leve
les		should be able to	1	2	3	4	5	6	7	8	9	10	11	12	01	O 2	03	1
1	15ME742.1	Understand the fundamentals of																L2
		tribology																
1	15ME742.2	Understand the parameters associated																L2
		with tribology																
2	15ME742.3	Understand the concepts of																L2
		tribological components experiencing																

1	1			ı	ı	ı	ı	l.		i	1	1	1	1	í.	i	1 1
		the relative motion															
2		Understand the concepts of contact															L2
		mechanism involved in relative															
		motion															
3		Analyze requirements for design a															L4
		lightly load journal bearings															
3	15ME742.6	Analyze terminology of full journal															L4
		bearing															
4	15ME742.7																L3
		characteristics of bearing in design of															
		plane slider bearing															
4		Apply concepts of hydro static															L3
		lubrication for design a step bearing															
5		Understand bearing material															L2
		properties and selection procedure															
5		Understand principles of surface															L2
		engineering for different applications															
		of tribology	-	1													
-		Average attainment (1, 2, or 3)															-
-	PO, PSO	1.Engineering Knowledge; 2.Problem															
		Investigations of Complex Problem															-
		7.Environment and Sustainability; 8															
		11.Project Management and Finance	; 1	2.Li	ife-la	ong	Lea	ırniı	ıg;	<i>S1.5</i>	Softv	vare	Eng	gine	erir	1g; S	2.Data
		ase Management; S3.Web Design															

5. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Modu	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
les					
1	Electron Tubes &	Seminar	2 nd week / date	Dr XYZ, Inst	List from B4
	Amplifiers				above
2					
3					
4					
5					

6. Content Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Modu	Gap Topic	Area	Actions Planned	Schedule Planned	Resources Person	PO Mapping
les	_					
1	ANSYS HFSS - High Frequency Software Simulation Tool	Placement, GATE, Higher Study, Entrepreneur ship.	Presentation by students & Mini Project	3 rd week / date	Dr ABC, Inst. Self	List from B4 above
1						
2						
2						
3						
3						
4						
4						
5						
5						

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod	Title	Teach.	Ē	No. of question in Exam						Levels
ules		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
							Asg			
1	Introduction to tribology	8	2	-	-	1	1	2	CO1, CO2	L2, L2
2	Friction and wear	8	-	2	-	1	1	2	CO3, CO4	L2, L2
3	Hydrodynamic journal bearings	10	2	-	-	1	1	2	CO5, CO6	L3, L3
4	Plane slider bearings with fixed/pivoted	8	-	2	-	1	1	2	CO7, C08	L3, L3
	shoe and hydrostatic bearings									
5	Bearing Materials and Introduction to	8	-	-	4	4	1	2	CO9, CO10	L2, L2
	Surface engineering									
-	Total	42	4	4	4	5	5	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod	Evaluation	Weightage in	СО	Levels
ules		Marks		
	CIA Exam – 1	15	CO1, CO2, CO5, CO6	L2,L2,L3, L3
3,4	CIA Exam – 2	15	CO3, CO4, CO7, C08	L2, L2,L3,L3
5	CIA Exam – 3	15	CO9, CO10	L2,L2
1, 2	Assignment - 1	05	CO1, CO2, CO5, CO6	L2,L2,L3, L3
	Assignment - 2	05	CO3, CO4, CO7, CO8	L2, L2,L3,L3
5	Assignment - 3	05	CO9, CO10	L2,L2
	Seminar - 1	00	CO1, CO2, CO5, CO6	L2,L2,L3, L3
3,4	Seminar - 2	00	CO3, CO4, CO7, CO8	L2, L2,L3,L3
5	Seminar - 3	00	CO9, CO10	L2,L2
	Quiz - 1	-	-	-
	Quiz - 2	-	-	-
5	Quiz - 3	-	_	-
		-	_	
1 - 5	Other Activities – Mini Project	-	-	-
	Final CIA Marks	20	-	-

D1. TEACHING PLAN - 1

Module - 1

Title:	Introduction to Tribology	Appr	12 Hrs
		Time:	
15ME742 / A	Copyright ©2017. cAAS. All	rights rese	rved.

а	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
1	understand the fundamentals of tribology	CO1	L2
2	understand the parameters associated with tribology	CO2	L2
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
1	Introduction to tribology:Historical background	C01	L2
2	Practical importance and subsequent use in the field		
3	Lubricants: Types and specific field of applications.	CO2	L2
4	Properties of lubricants, viscosity, its measurement,	CO2	L2
5	effect of temperature and pressure on viscosity, lubrication types,	CO2	L2
6	Standard grades of lubricants, and selection of lubricants.	CO2	L2
с	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Application tribology in the transport industry focused on reliability, ensuring the safe, continuous operation of machine components,tribology research concentrated on the design and effective lubrication of machine components	CO1	L2
2	The use of lubricants which minimize direct surface contact reduces tool wear and power requirements	CO2	L2
d	Review Questions		-
u	The attainment of the module learning assessed through following questions	-	-
- 1	Explain historical background of tribology	CO2	L2
2	Explain instorical background of tribology Explain practical importance of tribology	CO2 CO2	L2 L2
3	Explain application of tribology in various fields	CO2	L2 L2
4	Define lubrication	CO2	L2 L2
5	Explain types and application of lubricants	CO2	L2 L2
6	Explain the properties of lubricants	CO2	L2 L2
7	Define viscosity. state the law of viscosity	CO2	L2
8	Explain the method of measurement of viscosity	CO2	L2 L2
9	Explain standard grades of lubricant	CO2	L2 L2
10	Distinguish between:	CO2	L2 L2
	 i) Dynamic and kinematic viscosity ii) Fluidity and viscosity iii)Newtonian and non-Newtonian fluid iv) Mineral oil and vegetable oil (for lubrication) v) Full and partial journals bearing. 		
11	Sketch and explain working of any two viscosity measuring apparatus types.	CO2	L2
12	Distinguish between: i) Dynamic and kinematic viscosity ii) Fluidity and viscosity in) Newtonian and non-Newtonian fluid iv) Mineral oil and vegetable oil (for lubrication) v) Full and partial journal bearing.	CO2	L2
13	Sketch and explain working of any two viscosity measuring apparatus types. Add a note on the effect of temperature and pressure on viscosity of a fluid.	CO2	L2
	Explain historical background of tribology	CO2	L2
<u>е</u> 1	Experiences	- CO1	- L2
2			
3			
4		CO2	L3
5			

Module – 3

Title:	Hydrodynamic journal bearings	Appr Time:	7 Hrs
a	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Analyze requirements for design a lightly load journal bearings	CO5	L3
2	Analyze terminology of full journal bearing	CO6	L3
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
7	Hydrodynamic journal bearings: Friction forces and power loss in a lightly loaded journal bearing,	CO5	L3
8	Petroff's equation, mechanism of pressure development in an oil film	CO5	L3
9	Reynold's equation in 2D.	CO5	L3
10	Introduction to idealized journal bearing	CO5	L3
10		CO6	L3
12	load carrying capacity, condition for equilibrium.	CO6	L3
	Sommerfeld's number and it's significance;		
13	partial bearings.	CO6	L3
14	end leakages in journal bearing,	CO6	L3
15	numerical examples on full journal bearings only.	CO5	L3
		CO6	L3
с	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Journal bearings support the cylindrical rotating shaft. Journal bearing are designed based on lubricant and lubrication mechanisms	CO5	L3
2	application can be found in a car's crankshaft and camshaft. In my industry we use tilt pad bearings in turbo machinery (e.g. compressors, turbines).	CO6	L3
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Define hydrodynamic journals bearings	CO5	L3
2	Explain types of hydrodynamic journals bearings	CO5	L3
3	Derive expression for frictional force and power loss in lightly loaded journals bearings	CO5	L3
4	Define friction force	CO5	L3
5	Explain and derive petroff's equation	CO5	L3
6	Explain the mechanism of pressure development in oil film	CO5	L3
7	Derive an expression for Reynold's equation in 2-d	CO5 CO5	L3
<u>8</u> 9	Derive expression for load carring capacity of idealized journal bearings Explain Sommerfeld's number and it;s significance	C05	L3 L3
10	Explain sommerfeid's number and it, significance	C05	L3 L3
10	A full journals bearings have a specification, shaft diameter 4.5cms, bearing length	CO6	L3
	6.5cms, radial clearance ratio is 0.0015, speed 2800rpm, radial load 800N, viscosity of lubricant at effective, temperature of oil 1.2*10 ⁻⁶ Reyn, consider bearings as a lightly loaded, determine i)frictional torque at the shaft ii)co-efficient of friction iii)power loss		
12	What are the advantages and disadvantages of hydrodynamic journal bearings	CO6	L3
13	Design a journal bearing with the following specifications: Journal diameter=100mm Journal speed=3000rpm Radial load=15kN.	CO6	L3
14	Design a journal bearing with the following specifications Journal diameter = 200	CO6	L3

	COURSE FLAN - CAT 2019-20		
	Diametrical clearance ratio temperature operatin		
	pm load on piston = 80 KN, Engine speed = 200 rpm, 9 Determine heat generated and		
	heat disipiated, given bient temperature = 25°C, Attitude = 0.8, Absolute , assume as		
	square bearing.		
	(1) Power loss (i) Coefficient of friction.		
15	Design a journal bearing with the following specifications, Diameter of pocket = 100	CO6	L3
	mm, Vertical thrust of bearing = 000 rpm, Viscosity = 0.025 pa.sec, film thickness = 0.125		
16	mm. oil flow, (1) Power loss (i) Coefficient of friction.	<u> </u>	1.2
16	A slider bearing with a rectangular pivoted shoe has the following	CO6	L3
	specifications.		
	length of shoe in the direction of motion = 75 mm, width of shoe = 112		
	mm, velocity of moving member $= 200$ mails, viscosity of fluid $= 32$ ep,		
	permissible minimum oil film thickness $= 0.0255$ min. Assume inclination of		
	bearing corresponding to $q = 1.2$.		
	Determine ; 1) Load carrying capacity and Power loss in bearing		
	2)Coefficient of friction Take into consideration the influence of end		
	leakage on the performance of the bearing.		
17	State Petroft's law and explain its significance	CO6	L3
18	With the help of neat sketches explain the working of i) Ostwakt viscometer ii) Saybolt	CO6	L3
	Viscometer.		
19	What is lightly loaded bearing? Derive petroffs equation for frictional force and co-	CO6	L3
	efficient of friction in lightly loaded bearing.		
20	A lightly loaded bearing has the following specifications: Journal diameter = 25mm,	CO6	L3
	bearing length = 57mm, Radial clearance = $5x10-2$ mm, Journal speed = $25,000$ rpm,		
	Radial Load = 910N, Viscosity of the lubricant = 24cp. Calculate: i) Coefficient of friction ii) Frictional Torque and iii) Power loss due to viscous friction		
21	Determine i) Load carrying capacity ii) Frictional force iii) Coefficient of friction and iv)	CO6	L3
21	Power loss due to friction for an idealized full Journal bearing having the following	000	L3
	specifications :		
	Diameter of the Journal = 50 mm, length of bearing = 65 mm, Speed of the Journal		
	=1200rpm, Radial clearance = 0.025mm, Average viscosity = 0.01125PaS, Attitude = 0.8		
22	A partial self contained 120°, centrally loaded bearing has the following specifications :	CO6	L3
	Journal diameter = 100mm, Bearing length = 125mm, Journal speed = 400rpm, Radial		
	clearance = 0.0625 mm, Minimum film thickness = 6.25×10^{-3} mm, Viscosity of lubricating		
	oil = 0.018Pa.S. Determine i) Load carrying capacity of the bearing ii) Power loss in the bearing iii) Maximum pressure in oil film.		
23	Explain with a neat sketch Tower's experiment	CO6	L3
23	The following specification refers to a full journal bearing, Journal diameter = 60 mm,	CO6	 L3
27	Bearing length = 75 mm , Journal speed = 2000 rpm , Radial clearance = 0.04 mm ,	000	15
	Viscosity of lubricant = 0.01 Pa Sec, Eccentricity ratio = 0.8 , Inlet pressure = 0.3 MPa,		
	Location of inlet hole = 300° . Determine maximum and minimum pressure and their		
	location.		
25	Explain with a neat sketch mechanism of pressure development in an oil film.	CO6	L3
26	The following data refers to a slider bearing with pivoted shoe: Length of the bearing = 500 With the following the bearing = 500 With the following the bearing = 500 with the bearing = 50	CO6	L3
	500 mm, Width of the bearing = 500 mm, Velocity of runner = 8 m/sec, Oil viscosity = 0.054 PaSec, Maximum and minimum film thickness = 0.15 mm and 0.075 mm.		
	Determine (i) Load that may be carried by the bearing. (ii) Coefficient of friction (iii)		
	Power loss.		
27	A lightly loaded journal bearing has the following specifications:	CO6	L3
	Diameter of journal = 50 mm		
	Bearing length = 80 mm		
	Diametral clearance ratio $= 0.002$		
	Radial load — 750 N		
	Viscosity — 10 cP		
	Speed = 4000 rpm		
	Determine: i) Frictional torque, ii) Coefficient of friction, iii) Power loss.		
28	A full journal bearing has the following specifications:	CO6	L3

	COURSE PLAN - CAY 2019-20		
29 30 31	COURSE PLAN - CAY 2019-20 Length of bearing = 60 mm Oil film temperature = 96° C Radial clearance = 0.05 mm Oil film thickness — 7.9 x10 ³ mm Lubricating oil is SAE 20. Lubricant is delivered to the bearing under a pressure through a single inlet pressure hole in an unloaded bearing region. Determine inlet pressure required if the rate of oil flow through the bearing must be 312 mm3 /sec in order to control bearing temperature. A lightly loaded journal bearing has the following specification : Diameter of Journal = 50mm ; Bearing length = 80mm ; Diametral clearance ratio = 0.002 Radial load = 750N ; Viscosity of lubricant = 10Cp ; Speed = 4000rpm. Determine i) Frictional torque on journal ii) Co — efficient of friction Power loss. Derive the Reynold's equation two dimensions. Also state the assumptions. A lightly loaded journal bearing has the following specifications :	CO6 CO6	L3 L3 L3
	Journal diameter = 100 mm; Bearing length = 80 mm; radial clearance = 0.05 mm; radial load = 1000 N; absolute viscosity of oil = 0.015 pas — sec. Using Petrofis equation, determine : i) Speed of journal which corresponds to a co-efficient of friction of 0.4. ii) Power loss at this speed.	-	
32	An idealized full journal bearing has the following data : Diameter of journal = 50 mm; bearing length = 65 mm; speed = 1200 rpm; radial clearance = 0.025 mm; average viscosity = 0.001125 pas-sec; attitude = 0.8. Calculate : i) Load carrying capacity ii) Co-efficient of friction iii) Power loss in bearing.	CO6	L3
33	A 120° centrally loaded bearing has the following specifications : Diameter of journal = 100 mm; length of bearing = 130 mm; diameter clearance = 0.15 mm; oil used SAE 60; minimum film thickness = 0.0045 mm; speed of journal = 600 rpm; bearing operating temperature = 95°C ; considering end leakage determine : i) Load carrying capacity ii) Power loss in the bearing iii) Expected maximum pressure in the bearing.	CO6	L3
34	A lightly loaded full journal bearing of an air compressor has the following specifications : Journal diameter = 64 mm, Bearing length = 57 mm, Radial clearance = 0.05 mm, Journal speed = 25000 rpm, Viscosity of the lubricating oil = 2.4 Cp, Radial load = 890 N. Determine : i) Torque, ii) Coefficient of friction, iii) Frictional force, iv) Power loss.	CO6	L3
35	The following data refers to a journal bearing : Journal diameter = 30 mm, Journal speed = 2000 rpm, Bearing length = 60 mm, Radial clearance = 0.02 mm,	CO6	L3
15ME742 /			

	Inlet pressure = 0.3 MPa, Hole location = 300° , Viscosity of oil = 20 cp, Attitude = 0.8 .		
	Plot the pressure distribution diagram. If the distribution is not satisfactory, what alternatives		
	are required to make?		
e	Experiences	-	-
1		CO3	L2
2			
3			
4		CO4	L3
5			

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs C	ode:	15ME742	Sem:	VII	Marks:	30	Time: 7	5 minutes		
Cours	se:	TRIBOLOG	Y							
-	-	Note: Answ	er all quest	ıle : 1, 2	Marks	СО	Level			
1	а	Explain prac	tical impor	tance of tribe	ology?			5	CO1	L2
	b	Explain appl	ication of t	ribology in v	arious fields			5	CO1	L2
	с	Define lubrio	cation expl	ain standard	grade of lubric	ant		5		
					OR					
2	а	Explain the j	properties o	f lubricants	and it's applica	ation of lub	ricants	5	CO2	L2
	b	Explain the 1	method of r	neasurement	of viscosity			5	CO2	L2
	с	Define visco	sity. state tl	ne law of vis	cosity			5	CO2	L2
3	а	Derive expr	ession for	frictional fo	orce and power	r loss in l	ightly loaded journa	ıls 8	CO5	L3
		bearings								
	b						4.5cms, bearing leng		CO5	L3
							al load 800N, viscosi			
				· •	re of oil 1.2^{*}	10 ⁻ 6Reyn,	consider bearings as	a		
		lightly loade								
		i)frictional to								
		ii)co-efficier		1						
		iii)power los								
4		1			;s significance			7	CO6	L3
	b	Derive expre	ession for lo	ad carring c	apacity of ideal	lized journa	al bearings	8	CO6	L3

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

	Model Assignment Questions												
Crs Code: 15ME742 Sem:			VII	Marks:	5	Time: 9	0 – 120 n	ninutes					
Course	Course: TRIBOLOGY Module : 1, 2						e : 1, 2						
Note:	Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.												
SNo	۱	USN		1	Assignment Do	escription		Marks	CO	Level			
1	1K	T16ME	Explain historic	al backg	ground of tribol	ogy		5	CO1	L2			
2	1K	T16ME	Explain practic	al impor	tance of tribolo	gy		5	CO1	L2			
3	1K	T16ME	Explain applica	tion of t	ribology in var	ious fields		5	CO1	L2			
4	1K	T16ME	Define lubricati	on				5	CO1	L2			
5	1K	T16ME	Explain types a	nd appli	cation of lubric	ants		5	CO1	L2			
6	1K	T16ME	Explain the pro	perties o	f lubricants			5	CO1	L2			
7						5	CO1	L2					
8	1K	1KT16ME Explain the method of measurement of viscosity						5	CO1	L2			
9 1KT16ME Explain standard grades of lubricant					5	CO1	L2						
10	1K	T16ME	Define hydrody	namic jo	ournals bearing	s		5	CO1	L2			

11	1KT16ME	Explain types of hydrodynamic journals bearings	5	CO1	L2
12	1KT16ME	Derive expression for frictional force and power loss in lightly loaded	5	CO1	L2
		journals bearings			
13	1KT16ME	Define friction force	5	CO1	L2
14	1KT16ME	Explain and derive petroff's equation	5	CO1	L2
15	1KT16ME	Explain the mechanism of pressure development in oil film	5	CO1	L2
16	1KT16ME	Derive an expression for Reynold's equation in 2-d	5	CO1	L2
17	1KT16ME	Derive expression for load carring capacity of idealized journal	5	CO1	L2
		bearings			
18	1KT16ME	A full journals bearings have a specification, shaft diameter			
		4.5cms, bearing length 6.5cms, radial clearance ratio is 0.0015, speed			
		2800rpm, radial load 800N, viscosity of lubricant at effective,			
		temperature of oil 1.2*10 6Reyn, consider bearings as a lightly loaded			
		, determine			
		i)frictional torque at the shaft			
		ii)co-efficient of friction iii)power loss			
19	1KT16ME	Explain sommerfeld's number and it;s significance	5	CO1	L2
20	1KT16ME	Explain sommeried sindhoer and it, significance	5	C01	L2 L2
20	1KT16ME	Explain bistorical background of tribology	5	C01	L2 L2
22	1KT16ME	Explain instolical background of tribology Explain practical importance of tribology	5	C01	L2 L2
23	1KT16ME	Explain application of tribology in various fields	5	C01	L2
24	1KT16ME	Define lubrication	5	C01	L2
25	1KT16ME	Explain types and application of lubricants	5	C01	L2
26	1KT16ME	Explain the properties of lubricants	5	CO1	L2
27	1KT16ME	Define viscosity. state the law of viscosity	5	CO1	L2
28	1KT16ME	Explain the method of measurement of viscosity	5	CO2	L2
29	1KT16ME	Explain standard grades of lubricant	5	CO2	L2
30	1KT16ME	Define hydrodynamic journals bearings	5	CO2	L2
31	1KT16ME	Explain types of hydrodynamic journals bearings	5	CO2	L2
32	1KT16ME	Derive expression for frictional force and power loss in lightly loaded	5	CO2	L2
		journals bearings			
33	1KT16ME	Define friction force	5	CO2	L2
34	1KT16ME	Explain and derive petroff's equation	5	CO2	L2
35	1KT16ME	Explain the mechanism of pressure development in oil film	5	CO2	L2
36	1KT16ME	Derive an expression for Reynold's equation in 2-d	5	CO2	L2
37	1KT16ME	Derive expression for load carring capacity of idealized journal	5	CO2	L2
20		bearings	~	000	
38	1KT16ME	A full journals bearings have a specification, shaft diameter	5	CO2	L2
		4.5cms, bearing length 6.5cms, radial clearance ratio is 0.0015, speed 2800rpm, radial load 800N, viscosity of lubricant at effective,			
		temperature of oil $1.2*10^{\circ}$ 6Reyn, consider bearings as a lightly loaded			
		, determine			
		i)frictional torque at the shaft			
		ii)co-efficient of friction			
		iii)power loss			
39	1KT16ME	Explain sommerfeld's number and it;s significance	5	CO2	L2
40	1KT16ME	Explain end leakages in journals bearings	5	CO2	L2
41	1KT16ME	Explain historical background of tribology	5	CO2	L2
42	1KT16ME	Explain practical importance of tribology	5	CO2	L2
43	1KT16ME	Explain application of tribology in various fields	5	CO2	L2
44	1KT16ME	Define lubrication	5	CO2	L2
45	1KT16ME	Explain types and application of lubricants	5	CO2	L2
46	1KT16ME	Explain the properties of lubricants	5	CO2	L2
47	1KT16ME	Define viscosity. state the law of viscosity	5	CO2	L2
48	1KT16ME	Explain the method of measurement of viscosity	5	CO2	L2
49	1KT16ME	Explain standard grades of lubricant	5	CO2	L2
50	1KT16ME	Define hydrodynamic journals bearings		CO5	L3
51	1KT16ME	Explain types of hydrodynamic journals bearings		CO5	L3
52	1KT16ME	Derive expression for frictional force and power loss in lightly loaded		CO5	L3

		journals bearings		
53	1KT16ME	Define friction force	CO5	L3
54	1KT16ME	A full journals bearings have a specification, shaft diameter 4.5cms,bearing length 6.5cms, radial clearance ratio is 0.0015, speed 2800rpm, radial load 800N, viscosity of lubricant at effective, temperature of oil 1.2*10 ⁻⁶ Reyn, consider bearings as a lightly loaded , determine i)frictional torque at the shaft ii)co-efficient of friction iii)power loss	CO5	L3
55	1KT16ME	Explain and derive petroff's equation	CO5	L3
56	1KT16ME	Explain the mechanism of pressure development in oil film	CO5	L3
57	1KT16ME	Derive an expression for Reynold's equation in 2-d	CO5	L3
58	1KT16ME	Derive expression for load carring capacity of idealized journal	CO5	L3
		bearings		
59	1KT16ME	Explain sommerfeld's number and it;s significance	CO5	L3
60	1KT16ME	Explain end leakages in journals bearings	CO5	L3

D2. TEACHING PLAN - 2

Module – 2

Title:	Friction and wear	Appr Time:	12 Hrs
a	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Understand the concepts of tribological components experiencing the relative motion	CO5	L2
2	understand the concepts of contact mechanism involved in relative motion	CO6	L3
b	Course Schedule		
Class No	Portion covered per hour	•	•
16	Friction: Origin, friction theories	CO5	L3
17	friction of metals and non metals		
18	measurement methods.		
19	Wear: Classification and mechanisms of wear,	CO5	L3
20	De lamination theory, debris analysis.		
21	Testing methods and standards.	CO5	L3
22	Related case studies.		
c	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	In drum brakes, brake shoes or pads are pressed outwards against a rotating cylinder (brake drum) to create friction. Since braking discs can be more efficiently cooled than drums, disc brakes have better stopping performance.	CO3	L2
2	Wear in machine element, together with other processes such as fatigue and , creep causes functional surfaces to degrade, eventually leading to material failure or loss of functionality.	CO4	L2
d	Review Questions	_	-
-	The attainment of the module learning assessed through following questions	-	-
18	Define friction	CO3	L2
19	State and explain friction theories	CO3	L2
20	Explain measurement method for friction	CO3	L2
21	Explain friction of metals and non metals	CO3	L2
22	Define wear explain classification	CO3	L2
23	Explain mechanism of wear	CO3	L2
24	Explain delamination theories	CO4	L2
25	Explain debris analysis	CO4	L2
26	Explain testing methods and related standard to measurement of wear	CO4	L2

27	Define friction	CO4	L2
28	State and explain friction theories	CO4	L2
29	Explain measurement method for friction	CO4	L2
e	Experiences	-	-
1		CO6	L2
2			
3			
4		CO6	L3
5			

Module – 4

Title:	Plane slider bearings with fixed/pivoted shoe and hydrostatic bearings	Appr Time:	13 Hrs
а	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Apply the performance characteristics of bearing in design of plane slider bearing	CO3	L2
2	Apply concepts of hydro static lubrication for design a step bearing	CO4	L2
b	Course Schedule		
Class No		-	-
23	Plane slider bearings with fixed/pivoted shoe:	C07	L3
24	Pressure distribution, Load carrying capacity.		
25	coefficient of friction, frictional resistance in a fixed/pivoted shoe bearing	C07	L3
26	center of pressure	C07	L3
27	numerical examples.		
28	Hydrostatic Lubrication: Introduction to hydrostatic lubrication	CO8	L3
29	hydrostatic step bearings,		
30	Load carrying capacity and oil flow through the hydrostatic step bearing,	CO8	L3
31	Numerical examples.	CO8	
	Amplication Amos		
<u>c</u>	Application Areas Students should be able employ / apply the Module learnings to	-	-
1	plain bearing it is simply a shaft rotating in a bearing. In locomotive and	CO7	L3
	rail road car applications a journal bearing specifically referred to the plain		
	bearing once used at the ends of the axles of railroad wheel sets		
2	Hydrostatic bearing in high precision machine tools ,pad for automotive application,high-	CO8	L3
	precision applications in measuring, testing and machine tool engineering		
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	A rectangular slider bearing with pivoted shoe has the following specification: Length of shoe=60mm Width of shoe=55mm Slider speed=5m/s	C07	L3
	Load=25kN Absolute viscosity=0.012Pas. Determine: (a)Minimum film thickness		
	(b) Power loss due to viscous friction. Neglect side leakage.	0.5	
2	Compare advantages and disadvantages of hydrodynamic and hydrostatic bearing.	C07	L3
3	What is the main difference between hydrodynamic and hydrostatic lubrication Explain the working principle and applications of hydrodynamic thrust bearing	C07	L3
4 5	Write a note on thermal equilibrium of journal bearing	C07 C07	L3 L3
6	An oil ring full journal bearing is to operate in still air. The bearing diameter is 75 mm and length is 75 mm. Bearing is subjected to a load of 5 KN and is rotating at 500 rpm. Radial	C07	L3 L3

	clearance is 0.0625 mm. The oil is SAE 30 and ambient temperature is 20 C. Determine the equilibrium temperature and viscosity of oil.		
7	Derive an expression for pressure distribution in plane slider bearing with fixed shoe	C07	L3
8	Derive an expression for load carrying capacity in plane slider bearing with fixed shoe	C07	L3
9	Derive an expression for pressure distribution in plane slider bearing with pivoted shoe	C07	L3
10	Derive an expression for load carrying capacity in plane slider bearing with pivoted shoe	CO8	L3
11	Derive an expression for center of pressure in plane slider bearing with fixed shoe	CO8	L3
12	Derive an expression for co-efficient of friction in plane slider bearing with pivoted shoe	CO8	L3
13	Derive an expression for center of pressure in plane slider bearing with fixed shoe	CO8	L3
14	Derive an expression for co-efficient of friction in plane slider bearing with pivoted shoe	CO8	L3
15	Explain hydro static lubrication	CO8	L3
16	Explain hydro static step bearings	CO8	L3
17	Derive an expression for load carrying capacity in hydro static step bearings	CO8	L3
18	Derive an expression for oil flow through hydro static step bearings	CO8	L3
19	A hydro static step bearing has the following data diameter of the shaft -150mm, dia of	CO8	L3
	pocket-100mm,vertical thrust of bearing-60*10 ³ N,external pressure-1 atm,shaft speed- 1500rpm,viscosity of lubricant -30cp,desirable oil thickness-0.0125cm.determine i)rate of flow ii)power loss due to friction iii)co- efficient of friction		
20	Rectangular plain slider bearing with fixed shoe with no end leakage has the following specifications Bearing length = 90mm, width of shoe = 90mm, Load on the bearing =7800N, Slider velocity = 250 cm/sec, Indination $a = -0.00035$ radians, visocity of oil at operating temperature = 40cp. Determine: i) Minimum Film thickness ii) Power loss iii) Co — efficient of friction.	5	CO
21	pivoted shoe of the slider bearing has square shape. The load acting on the bearing is 13344N, velocity of the moving member is 5.08 m/sec, and Lubricating oil is SAE 40. The expected mean temperature of oil is 90°C. Permissible minimum oil film thickness is 1.905 x10-5 m. Find i) Required dimensions of the shoe ii) Coefficient of friction under given operating conditions iii) Power loss. Assume inclination of surface corresponds to maximum load carrying capacity, Neglect the effect of end flow from the bearing.	C07	L3
22	Hydrostatic step bearing has following specifications shall diameter = $0.150m$, Recess diameter = $0.100m$, Vertical thrust load = $60kN$, Speed of the shaft = 1500 rev/min , Viscosity of the lubricant is 30cp, Minimum oil film thickness = $1.25x104m$. Determine: i) Discharge ii) Power loss due to viscous friction iii) coefficient of frication.	C07	L3
23	A hydro static step bearing has following specification: Shaft diameter = 130 mm, Pocket diameter = 55 mm, Shaft speed = 1800 rpm, Inlet pressure = 3.75 MPa, External pressure = 0, Expected oil temperature = 50°C Desirable oil film thickness = 0.00875 mm, Lubricating oil used = SAE60 ii) The rate of flow through bearing Determine : i) Load the bearing can support (10 Marks) iii) Power loss	C07	L3
24	Derive an expression for load carrying capcity of hydrostatic step bearing.	C07	L3
25	Distinguish a pivoted shoe slider bearing from a fixed shoe slider bearing.	C07	L3
26	Discuss locating center of pressure in fixed show slider bearing.	C07	L3
27	 A pivoted shoe of the slider bearing has square shape. The load acting on the bearing is 13.34 kN velocity of the moving member is 5.08 m/sec. Lubricating oil is SAL 40. The expected mean temperature of oil film is 90°C. Permissible minimum oil film thickness is 1.905 x 10-5 m. Find: i) Required dimensions of the shoe ii) Coefficient of friction in the bearing under given operating condition iii) Power loss. Assume that inclination of surface corresponds to maximum load carrying capacity. Neglect effect of end flow of oil. 	C07	<u>L3</u>
28	State the principles, advantages, disadvantages and applications of hydrostatic lubrication.	C07	L3
28	Explain the two main systems of hydrostatic lubrication.	C07	L3
30	A hydrostatic circular thrust bearing has the following data: Dia of pocket = 200 mm Shaft dia — 300 mm Pressure at the pocket = 500 kN/m/	C07	L3 L3
	Shaft speed 100 rpm Film thickness = 0.07 mm		

	Determine: i) Load carrying capacity, ii) Oil flow rate, iii) Power loss due to friction.		
31	A hydrostatic step bearing for a turbine rotor has the following specifications : Diameter of shaft = 150mm ; Diameter of pocket = 100mm ; Vertical thrust of bearing = 70kN ; Shaft speed = 1000 rpm ; Viscosity of lubricant under operating condition = 0.025 fas — sec ; Desirable oil film thickness = 0.125mm. Determine i) Rate of oil flow through the bearing ii) Power loss due to viscous friction iii) co-efficient of friction.	C07	L3
32	A hydrostatic step bearing for a turbine rotor has the following specification :Diameter of shaft = 150 mm; diameter of pocket = 100 mm; vertical thrust = 70 kN; shaft speed = 1000 rpm; viscosity = 0.025 pa. sec; oil film thickness = 0.125 mm. Determine : i) Rate of oil flow through the bearing ii) Power loss due to viscous friction iii) Co-efficient of friction	C07	L3
33	A sider bearing with a rectangular pivoted shoe has the following specifications : Length of the shoe in the direction of motion = 75 mm Width of the shoe = 112.5 mm Velocity of moving member = 2 m/s Expected oil temperature = 70°C Permissible minimum film thickness = 0.0225 mm Lubricating oil used = SAE 40. Assuming the condition of bearing surface corresponds to maximum load carrying capacity of bearing. Determine : i) Load carrying capacity of bearing, ii) Power loss. Consider end leakage. Also calculate coefficient of friction.	C07	L3
34	Hydrostatic step bearing has the following specifications : Diameter of shaft = 150 mm Diameter of pocket = 100 mm Vertical thrust = 70 kN Shaft speed = 1000 rpm Viscosity of the lubricant = 0.025 PaS. Desirable oil film thickness = 0.125mm. Determine : i) Rate of flow through the bearing ii) Power loss due to viscous friction iii) Coefficient of friction.	C07	L3
	Experiences	_	
e 1		- CO7	 L2
2		207	112
3			
4		CO8	L3
5			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs C	Code:	15ME742	Sem:	VII	Marks:	30	Time:	75 minutes		
Cour	se:	TRIBOLOG	Y	·	· · · ·	·				
-	-	Note: Answe	er all questio	ns, each c	arry equal ma	rks. Modul	le : 3, 4	Marks	СО	Level
1	а	Define friction	on. State and	explain fri	ction theories			5	CO3	L2
	b	Explain mea	surement met	hod for fri	ction			5	CO3	L2
	с	Explain frict	ion of metals	and non n	netals			5	CO3	
					OR					
2	а	Explain mec	hanism of we	ar				5	CO4	L2
	b	Explain dela	mination theo	ories				5	CO4	L2
	с	Explain debr	is analysis					5	CO4	L2
3	a	A rectangula	r slider bearir	ng with piv	voted shoe has t	he followin	g specification:	8	CO7	L3
		Length of sh	oe=60mm							
		Width of sho	e=55mm							
		Slider speed:	=5m/s							

		Load=25kN			
		Absolute viscosity=0.012Pas.			
		Determine:			
		(a)Minimum film thickness			
		(b) Power loss due to viscous friction. Neglect side leakage.			
	b	Derive an expression for load carrying capacity and pressure distribution in plane slider bearing with fixed shoe	7	CO7	L3
		OR			
4	a	A hydro static step bearing has the following data diameter of the shaft -150mm dia of pocket-100mm vertical thrust of bearing-60*10 ³ N external pressure-1 atm shaft speed-1500rpm viscosity of lubricant -30cp desirable oil thickness-0.0125cm determine i)rate of flow ii)power loss due to friction iii)co- efficient of friction	7	CO8	L3
	b	Derive an expression for load carrying capacity oil flow through hydro static step bearings	8	CO8	L3

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

			1		Iodel Assignmen			I		
Crs Co		15ME742		VII	Marks:	5		90 – 120) minutes	
Course		TRIBOLC				Module				
			nswer 2-3 assi	-	Each assignmen		ual mark.			
SNo		USN			Assignment Des	scription		Mark		Level
	1KT1		Define friction					5	CO4	L2
	1KT1		State and expla					5	CO4	L2
	1KT1				nethod for frictio			5	CO4	L2
	1KT1		-		ls and non meta	ls		5	CO4	L2
	1KT1		Define wear ex					5	CO4	L2
	1KT1		Explain mecha					5	CO5	L2
	1KT1		Explain delam		leories			5	CO5	L2
	1KT1		Explain debris					5	CO5	L2
	1KT1				s and related star	ndard to me	asurement of wear	5	CO5	L2
	1KT1		Define friction					5	CO4	L2
11	1KT1	5ME	State and expla	ain frictio	on theories			5	CO4	L2
	1KT1				nethod for friction			5	CO4	L2
13	1KT1	5ME	Explain friction	n of meta	ls and non meta	ls		5	CO4	L2
	1KT1		Define wear ex					5	CO4	L2
15	1KT1	5ME	Explain mecha	nism of v	wear			5	CO5	L2
16	1KT1		Explain delam		leories			5	CO5	L2
17	1KT1	5ME	Explain debris	analysis				5	CO5	L2
18	1KT1	5ME	Explain testing	g methods	s and related star	ndard to me	asurement of wear	5	CO5	L2
19	1KT1	5ME	Define friction					5	CO4	L2
20	1KT1	5ME	State and expla	ain frictio	on theories			5	CO4	L2
21	1KT1	5ME	Explain measu	rement n	nethod for friction	n		5	CO4	L2
22	1KT1	5ME	Explain friction	n of meta	ls and non meta	ls		5	CO4	L2
23	1KT1	5ME	Define wear ex	xplain cla	ssification			5	CO4	L2
24	1KT1	5ME	Explain mecha	nism of v	wear			5	CO5	L2
25	1KT1	5ME	Explain delam	ination th	eories			5	CO5	L2
26	1KT1	5ME	Explain debris	analysis				5	CO5	L2
27	1KT1	5ME	Explain testing	g methods	s and related star	ndard to me	asurement of wear	5	CO5	L2
28	1KT1	5ME	A rectangular	slider bea	aring with pivote	ed shoe has	the following	5	CO7	L3
			specification:				-			
			Length of shoe	=60mm						
			Width of shoe=							
			Slider speed=5							

		COURSE FLAN - CAT 2019-20			
		Load=25kN			
		Absolute viscosity=0.012Pas.			
		Determine:			
		(a)Minimum film thickness			
		(b) Power loss due to viscous friction. Neglect side leakage.			
29	1KT15ME	Compare advantages and disadvantages of hydrodynamic and	5	CO7	L3
		hydrostatic bearing.			
30	1KT15ME	What is the main difference between hydrodynamic and hydrostatic	5	CO7	L3
		lubrication			
31	1KT15ME	Explain the working principle and applications of hydrodynamic thrust	5	CO7	L3
		bearing	-		
32	1KT15ME	Write a note on thermal equilibrium of journal bearing	5	CO7	L3
33	1KT15ME	An oil ring full journal bearing is to operate in still air. The bearing	5	CO7	L3
00		diameter is 75 mm and length is 75 mm. Bearing is subjected to a load	U	007	20
		diameter is 75 mm and length is 75 mm. Bearing is subjected to a load of 5 KN and is rotating at 500 rpm. Radial clearance is 0.0625 mm. The oil is SAE 30 and ambient temperature is 20 C. Determine the			
		oil is SAE 30 and ambient temperature is 20 C. Determine the			
24	1KT15ME	equilibrium temperature and viscosity of oil.		C07	1.2
34	1KT15ME	A hydro static step bearing has the following data diameter of the shaft -150mm		CO7	L3
		dia of pocket-100mm			
		vertical thrust of bearing-60*10 ³ N			
		external pressure-1 atm			
		shaft speed-1500rpm			
		viscosity of lubricant -30cp			
		desirable oil thickness-0.0125cm			
		determine i)rate of flow ii)power loss due to friction iii)co- efficient of			
		friction			
35	1KT15ME	Derive an expression for pressure distribution in plane slider bearing	5	CO7	L3
55	IKIIJWE	with fixed shoe	5	007	LJ
36	1KT15ME	Derive an expression for load carrying capacity in plane slider bearing	5	CO7	L3
30	INIJNE	with fixed shoe	5	00/	LJ
27	1KT15ME		5	C07	12
37	IKIISME	Derive an expression for pressure distribution in plane slider bearing	5	CO7	L3
20		with pivoted shoe	5	007	1.2
38	1KT15ME	Derive an expression for load carrying capacity in plane slider bearing	5	CO7	L3
20		with pivoted shoe	-	007	1.0
39	1KT15ME	Derive an expression for center of pressure in plane slider bearing with	5	CO7	L3
10		fixed shoe	-	007	1.0
40	1KT15ME	Derive an expression for co-efficient of friction in plane slider bearing	5	CO7	L3
		with pivoted shoe	_	a a a	
41	1KT15ME	Derive an expression for center of pressure in plane slider bearing with	5	CO7	L3
		fixed shoe	_		
42	1KT15ME	Derive an expression for co-efficient of friction in plane slider bearing	5	CO7	L3
		with pivoted shoe			
43	1KT15ME	Explain hydro static lubrication	5	CO8	L3
44	1KT15ME	Explain hydro static step bearings	5	CO8	L3
45	1KT15ME	Derive an expression for load carrying capacity in hydro static step	5	CO8	L3
		bearings			
46	1KT15ME	Derive an expression for oil flow through hydro static step bearings	5	CO8	L3
	1KT15ME	Define friction	5	CO8	L3
47	1KT15ME	A hydro static step bearing has the following data		CO8	L3
		diameter of the shaft -150mm			
		dia of pocket-100mm			
		vertical thrust of bearing-60*10 ³ N			
		external pressure-1 atm			
		shaft speed-1500rpm			
		viscosity of lubricant -30cp			
		desirable oil thickness-0.0125cm			
		determine i)rate of flow ii)power loss due to friction iii)co- efficient of			
	1				
		friction			
48	1KT15ME			CO4	L2
48 49	1KT15ME 1KT15ME	State and explain friction theories Explain measurement method for friction		CO4 CO4	L2 L2

51	1KT15ME	Define wear explain classification	CO4	L2
52	1KT15ME	Explain mechanism of wear	CO4	L2
53	1KT15ME	Explain delamination theories	CO5	L2
54	1KT15ME	Explain debris analysis	CO5	L2
55	1KT15ME	Explain testing methods and related standard to measurement of wear	CO5	L2
56	1KT15ME	A hydro static step bearing has the following data	C08	L3
		diameter of the shaft -150mm, dia of pocket-100mm		
		vertical thrust of bearing-60*10 ³ N		
		external pressure-1 atm		
		shaft speed-1500rpm		
		viscosity of lubricant -30cp		
		desirable oil thickness-0.0125cm		
		determine i)rate of flow ii)power loss due to friction iii)co- efficient of		
		friction		

D3. TEACHING PLAN - 3

Module – 5

Title:	Bearing Materials and Introduction to Surface engineering	Appr Time:	10 Hrs
а	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Understand bearing material properties and selection procedure	CO9	L2
2	principles of surface engineering for different applications of tribology	CO10	L2
b	Course Schedule	-	-
	Portion covered per hour	-	-
23	Bearing Materials: Commonly used bearings materials	CO9	L2
24	properties of typical bearing materials.		
25	Advantages and disadvantages of bearing materials.	CO9	L2
26	Introduction to Surface engineering	CO10	L2
27	Concept and scope of surface engineering.		
28	Surface modification – transformation hardening,	CO10	L2
29	surface melting, thermo chemical processes.		
30	Surface Coating – plating, fusion processes, vapor phase processes.	CO10	L2
31	Selection of coating for wear and corrosion resistance.	CO10	L2
с	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	_	-
1	Stainless steel materials are used to make bearing components because it is more resistant to surface corrosion due to the higher content of chromium (~18%) with the addition of nickel. The material needs to be protected from corrosion with a coating of oil/grease (cages) or by plating (shields).	CO9	L2
2	Surface engineering techniques are being used in the automotive, aerospace, missile, power, electronic, biomedical, textile, petroleum, petrochemical, chemical, steel, cement, machine tools. Surface engineering techniques can be used to develop a wide range of functional properties, including physical, chemical, electrical, electronic, magnetic, mechanical, wear-resistant and corrosion-resistant properties at the required substrate surfaces. Almost all types of materials, including metals, ceramics, polymers, and composites can be coated on similar or dissimilar materials.		L2
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Classify various bearing materials. Discuss their relative features	CO9	L2
2	Explain the properties of bearing materials	CO9	L2
3	Write advantages and dis advantages of bearing materials	CO9	L2

4	Write scope of surface engineering	CO9	L2
5	Explain surface modification	CO10	L2
6	Write a short note on transformation hardening	CO10	L2
7	Write a short note on surface melting	CO10	L2
8	Write a short note on thermo chemical engineering	CO10	L2
9	Write a short note on surface coating and plating	CO10	L2
10	Write a short note on on fusion processes and vapor phase processes	CO10	L2
11	Explain the procedure for selection coating for wear	CO10	L2
12	Explain corrosion resistance and how to prevent corrosion	CO10	L2
13	Write notes on i) Wear of ceramic materials ii) Wear measurements and iii) Effect of speed, temperature and pressure on wear.	CO10	L2
14	Briefly explain: i) Improved design and ii) Surface Engineering.	CO10	L2
15	List the commonly used bearing material and describe any of the five commonly with		L2 L2
15	respect to their characteristics and advantages.	010	12
16	List any ten desirable properties of typical bearing material and explain any of the five in	CO10	L2
10	portent properties in details	0010	112
17	Classify wear. Explain wear of polymer and ceramic materials.	CO10	L2
18	Explain the three tribological measures to reduce friction and wear.	CO10	L2 L2
10	Explain the three thorogen measures to reduce methon and wear.	CO10	L2 L2
20	What properties are expected of bearing materials? List them.	CO10	L2 L2
20	What are conformability and embedability with respect to hearing materials? Explain.	CO10	L2 L2
21	List the commonly used bearing materials. Explain any five of them with respect to their		L2 L2
22	typical properties and advantages.	010	L2
22	Write explanatory notes on:	CO10	L2
22	Wear of ceramic materials	010	L2
	Surface engineering		
	Wear measurements		
	Improved design of a tribological component		
	Advanced material's use in tribology application.		
23	list the properties of good bearing materials.	CO10	L2
20	b. List out the commonly used bearing materials.	0010	
24	List out the commonly used bearing materials.	CO10	L2
25	Give the classification of wear. Discuss in brief.	CO10	L2
26	Write short notes on wear of : i) Polymers ii) Ceramic materials.	CO10	L2
27	What are the technologies involved in surface engineering to improve tribological behavior		L2
27	of components.	0010	112
28	List any ten properties desirable for a typical bearing material	CO10	L2
20	Define wear. Discuss the different types of wear.	CO10	L2
30	Briefly discus behavior of tribological components.	CO10	L2 L2
30	Briefly explain the improved design and surface engineering.	CO10	L2 L2
32	explain any five desirable properties of a good bearing material.	CO10	L2 L2
33	With neat sketches, explain different types of wear.	CO10 CO10	L2 L2
34	Explain briefly :	CO10 CO10	L2 L2
54	Wear measurement	010	LZ
	Improved design		
	Improved design Material selection		

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs	Code:	15ME742	Sem:	VII	Marks:	30	Time:	75 minutes			
Cou	rse:	TRIBOLOC	θY								
-	-	Note: Answ	: Answer all questions, each carry equal marks. Module : 5 Marks CO Level								
1	а	Classify var	lassify various bearing materials. Discuss their relative features							L1	
	b	Explain the	Explain the properties of bearing materials					8	CO9	L2	
2	а	Write advan	tages and di	s advantages	of bearing ma	terials		7	CO9	L2	
	b	Explain surf	face modific	ation				8	CO9	L4	

COURSE PLAN - CAY 2019-20

3	а	Write a short note on on fusion processes and vapor phase processes	7	CO10	L1
	b	Explain corrosion resistance and how to prevent corrosion	8	CO10	L2
4	а	Write a short note on transformation hardening	7	CO10	L2
	b	Write a short note on surface melting	8	CO10	L2

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

		U		M	odel Assignme	nt Question	IS			
Crs Co	ode: 1	15ME742	2 Sem:	VII	Marks:	5	Time:	90 – 120 r	ninutes	
Course		FRIBOL				Module				
Note:	Each stu	udent to a	inswer 2-3 ass	signments. I	Each assignmer	nt carries ec	qual mark.			
SNo		ISN			ssignment Des			Marks	CO	Level
1	1KT15	ME	Classify vario	ous bearing	materials. Disc	uss their re	lative features	5	CO9	L2
2	1KT15	ME	Explain the p	roperties of	bearing materi	als		5	CO9	L3
	1KT15				advantages of	bearing ma	aterials		CO10	L4
4	1KT15	ME	Write scope of	of surface er	ngineering			5	CO10	L3
5	1KT15	ME	Explain surfa						CO10	L4
	1KT15				nsformation ha	dening			CO10	L4
	1KT15		Write a short		0				CO10	L4
	1KT15				rmo chemical e				CO10	L4
	1KT15				face coating an	<u> </u>			CO10	L4
	1KT15						or phase processes		CO10	L4
	1KT15				r selection coat	-			CO10	L4
	1KT15				nce and how to				CO10	L4
	1KT15				materials. Disc		lative features		CO9	L2
	1KT15				bearing materi				CO9	L2
	1KT15				advantages of	bearing ma	aterials			
	1KT15		Write scope of						CO10	L4
-	1KT15		Explain surfa						CO10	L4
	1KT15				nsformation ha	dening			CO10	L4
	1KT15		Write a short						CO10	L4
	1KT15				rmo chemical e				CO10	L4
	1KT15				face coating an				CO10	L4
	1KT15						or phase processes		CO10	L4
	1KT15				r selection coat				CO10	L4
	1KT15				nce and how to				CO10	L4
	1KT15				materials. Disc		elative features		CO9	L2
	1KT15				bearing materi		1.		CO9	L2
	1KT15				advantages of	bearing ma	aterials		CO9	L2
	1KT15		Write scope of						CO10	L4
	1KT15		Explain surfa			1			CO10	L4
	1KT15				nsformation has	dening			CO10	L4
	1KT15 1KT15		Write a short		rmo chemical e	mainaanina			CO10	L4 L4
-						<u> </u>			CO10	
	1KT15 1KT15				face coating an		or phase processes		CO10	L4 L4
-	1KT15				r selection coat	1	<u> </u>		CO10 CO10	L4 L4
	1KT15				nce and how to				CO10 CO10	L4 L4
-	1KT15				materials. Disc				CO10	L4 L2
	1KT15				bearing materi				C09	L2 L2
	1KT15				advantages of		aterials		C09	L2 L2
	1KT15		Write scope of			Journg Ille			CO9	L2 L4
40	1KT15		Explain surfa						CO10	L4 L4
						dening				L4 L4
						senning.				L4 L4
						ngineering				L4 L4
										L4 L4
							r phase processes			L4 L4
42 43 44 45	1KT15 1KT15 1KT15 1KT15 1KT15 1KT15	ME ME ME ME	Write a short Write a short Write a short Write a short	note on tran note on sur note on the note on sur	nsformation har face melting rmo chemical e face coating an	engineering d plating	or phase processes		CO10 CO10 CO10 CO10 CO10 CO10	

46	1KT15ME	Explain the procedure for selection coating for wear	CO10	L4
47	1KT15ME	Explain corrosion resistance and how to prevent corrosion	CO10	L4

F. EXAM PREPARATION

1. University Model Question Paper

Course		TRIBOLOGY Month	Year	May /2018		
Crs Co		15ME742Sem:VIIMarks:80Time:		180 mi		
Modu le	Note	Answer all FIVE full questions. All questions carry equal marks.	Marks	СО	Level	
1	а	Explain practical importance of tribology	4	CO1	L2	
	b	Explain application of tribology in various fields	8		L2	
	c	Explain standard grades of lubricant	4	CO2	L2 L2	
		OR			L2	
-	а	Explain the properties of lubricants	4	CO1	L2	
	b	Define viscosity. state the law of viscosity	8	CO2	L2	
	c	Explain the method of measurement of viscosity	4		L2	
2	a	State and explain friction theories	4	C03	L2	
	b	Explain measurement method for friction	8		L2	
	c	Explain friction of metals and non metals	4	CO4	L2	
					L2	
		OR Define ween evaluin electification	4	CO3	L2 L2	
-	a b	Define wear explain classification Explain mechanism of wear	4	CO3	L2 L2	
	c	Explain delamination theories	4	04	L2 L2	
	d	Explain debris analysis	4		L2 L2	
3	а	Derive expression for frictional force and power loss in lightly loaded journal bearings	s 4	CO5	L4	
	b	Explain the mechanism of pressure development in oil film	6		L4	
	c	Derive an expression for Reynold's equation in 2-d	6	CO6	L4	
		OR			L4	
-	a	Derive expression for load carring capacity of idealized journal bearings	4	CO5	L4	
	b	A full journals bearings have a specification, shaft diameter 4.5cms, bearing lengt 6.5cms, radial clearance ratio is 0.0015, speed 2800rpm, radial load 800N, viscosit of lubricant at effective, temperature of oil 1.2*10 ⁻⁶ Reyn, consider bearings as lightly loaded, determine i)frictional torque at the shaft ii)co-efficient of friction iii)power loss	у		L4	
	c	Explain sommerfeld's number and it;s significance	4	CO6	L4	
4	а	Derive an expression for pressure distribution in plane slider bearing with fixed sho	e 6	CO7	L3	
г	b	Derive an expression for load carrying capacity in plane slider bearing with nived shoe shoe			L3 L3	
	с	A rectangular slider bearing with pivoted shoe has the following specification: Length of shoe=60mm Width of shoe=55mm Slider speed=5m/s Load=25kN Absolute viscosity=0.012Pas. Determine:	4	C08	L3	
		(a)Minimum film thickness(b) Power loss due to viscous friction. Neglect side leakage.				

					L3
		OR			L3
-	a	Derive an expression for load carrying capacity in hydro static step bearings	4	CO7	L3
	b	Derive an expression for oil flow through hydro static step bearings	6	CO8	L3
	c	A hydro static step bearing has the following data	6		L3
		diameter of the shaft -150mm			
		dia of pocket-100mm			
		vertical thrust of bearing-60*10 ³ N			
		external pressure-1 atm			
		shaft speed-1500rpm			
		viscosity of lubricant -30cp			
		desirable oil thickness-0.0125cm			
		determine i)rate of flow ii)power loss due to friction iii)co- efficient of friction			
					L2
5	a	Classify various bearing materials. Discuss their relative features	4	CO9	L2
	b	Explain the properties of bearing materials	6	CO10	L2
	c	Write advantages and dis advantages of bearing materials	6		L2
					L2
		OR			L2
	a	Write a short note on thermo chemical engineering	4	CO9	L2
	b	Write a short note on surface coating and plating	4		L2
	c	Write a short note on on fusion processes and vapor phase processes	4	C010	L2
	d	Explain the procedure for selection coating for wear	4		L2

2. SEE Important Questions

Course	e:	TRIBOLOGY Month	/ Year	May /2	018
Crs Co	ode:	15ME742 Sem: 7 Marks: 80 Time:		180 mi	nutes
	Note	Answer all FIVE full questions. All questions carry equal marks.	-	-	
	Qno.	Important Question	Marks	СО	Year
le					
1		Sketch and explain working of any two viscosity measuring apparatus types. Expla	in 16	CO2	2010
		historical background of tribology			
	2	Explain practical importance of tribology, Explain standard grades of lubricant		CO1	2008
	3	Explain application of tribology in various fields		CO1	2009
		Define lubrication, viscosity. state the law of viscosity, Explain types and application	n	CO2	
		of lubricants			
	5				
2		State and explain friction theories, Explain measurement method for friction	16	CO3	2011
		Explain friction of metals and non metals, Define wear explain classification		CO3	2008
		Explain mechanism of wear, Explain delamination theories		CO4	
		Explain debris analysis		CO4	
	5	Explain testing methods and related standard to measurement of wear		CO3	
3	1	Explain sommerfeld's number and it;s significance	16	CO6	
5		Explain sommerred s number and it, s significance Explain end leakages in journals bearings	10	C06	
		Explain and derive petroff's equation		C00	2009
		Explain the mechanism of pressure development in oil film		C05	2009
		Design a journal bearing with the following specifications:		C05	2008
		Journal diameter=100mm		005	2008
		Journal speed=3000rpm			
		Radial load=15kN.			
		Design a journal bearing with the following specifications Journal diameter = $2($	00	CO6	2010

		Diametrical clearance ratio temperature operation pm load on piston = 80 KN, Engine speed = 200 rpm, 9 Determine heat generated and heat disipiated, given bient temperature = 25°C, Attitude = 0.8, Absolute , assume as square bearing. (1) Power loss (i) Coefficient of friction.			
4	1	Derive an expression for pressure distribution in plane slider bearing with fixed shoe	16	CO7	2004
	2	Derive an expression for load carrying capacity in plane slider bearing with pivoted shoe		CO7	2004
	3	Hydro static step bearing has the following data diameter of the shaft -150mm dia of pocket-100mm vertical thrust of bearing-60*10 ³ N external pressure-1 atm shaft speed-1500rpm viscosity of lubricant -30cp desirable oil thickness-0.0125cm determine i)rate of flow ii)power loss due to friction iii)co- efficient of friction		CO8	2006
	4	A rectangular slider bearing with pivoted shoe has the following specification: Length of shoe=60mm Width of shoe=55mm Slider speed=5m/s Load=25kN Absolute viscosity=0.012Pas. Determine: (a)Minimum film thickness (b) Power loss due to viscous friction. Neglect side leakage.	CO7		2004
	5	Derive an expression for load carrying capacity and oil flow through in hydro static step bearings.	CO8		2007
5	1	Classify various bearing materials. Discuss their relative features	16		2009
	2	Explain the properties of bearing materials	CO9		2007
	3	Write advantages and dis advantages of bearing materials	CO9		2007
	4	Write advantages and dis advantages of ocaring materials Write scope of surface engineering, explain surfaces modification	C010		2009
	5	Write a short note on transformation hardening and surface melting	CO10		2007
	6	Write a short note on surface melting	CO10		2007
	7	Write a short note on surface menting Write a short note on thermo chemical engineering surface coating and plating fusion processes and vapor phase processes	CO10		2009
	8	Explain the procedure for selection coating for wear	CO9		2007
	9	Explain corrosion resistance and how to prevent corrosion	CO9		

G. Content to Course Outcomes

1. TLPA Parameters

Table 1: TLPA – Example Course

	Table 1. TEFA - Example Course								
Mo	Course Content or Syllabus	Content	Blooms'	Final	Identified	Instructio	Assessment		
dul	(Split module content into 2 parts which have	Teaching	Learning	Bloo	Action	n	Methods to		
e- #	similar concepts)	Hours	Levels for	ms'	Verbs for	Methods	Measure		
			Content	Level	Learning	for	Learning		
						Learning			
Α	В	С	D	E	F	G	H		
1	Introduction to Tribology: Historical background,	4	L2	L2	-	- Lecture	- Slip Test		
	practical importance, and subsequent use in		understan		understand	-	-		
	the field.		d		-	-	-		
					Tribologic				
					al				
					properties				
1	Lubricants: Types and specific field of applications.	4	L2	L4	understand	- Lecture	- Assignment		
15M	E742 / A			Copyri	ght ©2017. cA	AS. All right	s reserved.		

	Properties of lubricants, viscosity, its measurement, effect of temperature and pressure on viscosity, lubrication types, standard grades of lubricants, and selection of lubricants.		understan d		Tribologic al parameters	-	-
2	Friction: Origin, friction theories, measurement methods, friction of metals and non-metals.	4	L2 understan d	L2	- understand -friction	- Lecture -	- Assignment -
2	Wear: Classification and mechanisms of wear, delamination theory, debris analysis, testing methods and standards. Related case studies.	4	L2 understan d	L4	- understand -	- Lecture -	- Slip Test -
3	Hydrodynamic journal bearings: Friction forces and power loss in a lightly loaded journal bearing,Petroff's equation, mechanism of pressure development in an oil film, and Reynold's equation in 2D.	5	L4 Analyse	L4	-anlyze -Lightly loaded journal bearing analysis	- Lecture -	- Slip Test -
3	Introduction to idealized journal bearing, load carrying capacity, condition for equilibrium,Sommerfeld's number and it's significance; partial bearings, end leakages in journal bearing, numerical examples on full journal bearings only.	5	L4 Analyse	L4	-anlyze -Full journal bearing analysis	- Lecture - Tutorial -	- Assignment - -
4	Plane slider bearings with fixed/pivoted shoe: Pressure distribution, Load carrying capacity, coefficient of friction, frictional resistance in a fixed/pivoted shoe bearing, center of pressure, numerical examples.	4	L3 apply	L3	anlyze -Plane slider bearings analysis	- Lecture - Tutorial -	- Assignment - -
4	Hydrostatic Lubrication : Introduction to hydrostatic lubrication, hydrostatic step bearings, load carrying capacity and oil flow through the hydrostatic step bearing, numerical examples	4	L3 apply	L2	anlyze - hydrostati c step bearings analysis	- Lecture - Tutorial -	- Assignment - -
5	Bearing Materials: Commonly used bearings materials, and properties of typical bearing materials. Advantages and disadvantages of bearing materials. Introduction to Surface engineering: Concept and scope of surface engineering.	4	L2 understan d	L2	- understand -Bearing Materials properties	- Lecture - -	- Assignment - -
5	Surface modification – transformation hardening, surface melting, thermo chemical processes. Surface Coating – plating, fusion processes, vapor phase processes. Selection of coating for wear and corrosion resistance.	4	L2 understan d	L2	- understand -surface engineerin g	- Lecture - -	- Assignment - -

2. Concepts and Outcomes:

Table 2: Concept to Outcome – Example Course

Mo	Learning or	Identified	Final Concept	Concept Justification	CO Components	Course Outcome
dul	Outcome from	Concepts		(What all Learning	(1.Action Verb,	
e- #	study of the	from		Happened from the	2.Knowledge,	
	Content or	Content		study of Content /	3.Condition /	Student Should be
	Syllabus			Syllabus. A short word	Methodology,	able to
	-			for learning or	4.Benchmark)	
				outcome)		
Α	Ι	J	K	L	М	N

	Understand the fundamentals of tribology	Tribologica l properties			-understand -Tribological properties	Understand the fundamentals of tribology
	Understand the parameters associated with tribology	1	Tribological parameters	Understand the parameters associated with tribology	understand Tribological parameters	Understand the parameters associated with tribology
	Understand the concepts of tribological components experiencing the relative motion	friction	friction		-understand -friction	Understand the concepts of tribological components experiencing the relative motion
	Understand the concepts of contact mechanism involved in relative motion	Contact mechanism	Contact mechanism	Understand the concepts of contac mechanism involved in relative motion		Understand the concepts of contact mechanism involved in relative motion
	Analyze requirements for design a lightly load journal bearings	Lightly loaded journal bearing analysis	journal bearing	Analyze requirements for design a lightly load journal bearings	-Lightly loaded journal	Analyze requirements for design a lightly load journal bearings
	Analyze terminology of full journal bearing	Full journal bearing analysis	Full journal bearing analysis	Analyze terminology of full journal bearing		Analyze terminology of full journal bearing
	Apply the performance characteristics of bearing in design of plane slider bearing	Plane slider bearings analysis	Plane slider bearings analysis	performance	anlyze -Plane slider bearings analysis	Apply the performance characteristics of bearing in design of plane slider bearing
4	Apply concepts		bearings analysis	hydro static lubrication	anlyze -hydrostatic step bearings analysis	Apply concepts of hydro static lubrication for design a step bearing
5	Understand bearing material properties and selection procedure	Bearing Materials properties	Bearing Materials properties	Understand bearing material properties and selection procedure	-understand -Bearing Materials properties	Understand bearing material properties and selection procedure
5	Understand	surface engineering	surface engineering	Understand principles of surface engineering for differen applications of tribology	-surface engineering	Understand principles of surface engineering for different applications of tribology